Typical Atrial Flutter

Matt Wright
St. Thomas’ Hospital
London

Heart Rhythm Congress
Birmingham, 2011
Typical Right Atrial Cavotricuspid Dependent Flutter

• A macro re-entrant arrhythmia
 – Anatomical barrier
 – Zone of slow conduction

• Typical CTI Dependent atrial flutter
 – Contained within the right atrium
 – Constrained anteriorly by the tricuspid valve
 – Constrained posteriorly by the crista terminalis and eustachian ridge
 – Travels in a counterclockwise direction around the atrium
Atrial Flutter
Atrial Flutter
Atrial Flutter: Activation Mapping
Atrial Flutter: Positioning Catheters
Atrial Flutter: Anatomy
Confirmation of Diagnosis

• Careful examination of the surface ECG

• If suspected:
 – low to high activation of septum
 – high to low activation of the lateral wall
 – CS activation proximal to distal, earlier than His A

• Entrainment
 – Two disparate sites within the circuit (PPI-TCL <30ms)
 – On the isthmus- concealed entrainment
Atrial Flutter: Lesion
Endpoint: Bidirectional Conduction Block

- After RF terminates atrial flutter conduction through the isthmus often persists.
- Conduction slowing often occurs before isthmus block.
 - Conduction slowing can be rate dependent.
- Recovery of conduction after initial isthmus block is common.

Differential Pacing

BLOCK

SLOW CONDUCTION

Heart Rhythm Congress
Birmingham, 2011
Double Potentials

Tada JACC 2001;38:750
Heart Rhythm Congress
Birmingham, 2011
Markers of Conduction Block

• increase in trans-isthmus conduction time
 ➢ differential pacing

• double potentials
 ➢ 100 - 110 ms interval between potentials
 • along entire ablation line
 ➢ differential pacing

• reversal of electrogram polarity on the opposite side of the ablation line from the pacing site

• change in p-wave morphology pacing lateral to the ablation line

Plateau

Rapid descent
Differential Pacing: Closer to Line

Heart Rhythm Congress
Birmingham, 2011
Differential Pacing: On the line

RFd

130ms

RFp

CS 1-2

CS 3-4

190 ms
Drug therapy vs first-line ablation for atrial flutter

61 patients
> 1 episode of atrial flutter
no prior antiarrhythmic drug therapy

Antiarrhythmic Drug Therapy
- sotalol, amiodarone
- flecainide, procainamide, propafenone

RF Ablation
- > 90% reduction in electrogram amplitude along ablation line

<table>
<thead>
<tr>
<th></th>
<th>Drug therapy</th>
<th>RF Ablation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Flutter Recurrence:</td>
<td>93%</td>
<td>6%</td>
</tr>
<tr>
<td>Atrial Fibrillation:</td>
<td>60%</td>
<td>29%</td>
</tr>
<tr>
<td>Sinus rhythm last f/u</td>
<td>36%</td>
<td>80%</td>
</tr>
</tbody>
</table>

mean follow-up: 22 months

Natale et al J Am Coll Cardiol 2000
Heart Rhythm Congress
Birmingham, 2011
Results

- Meta-analysis of 10 year period (10719 pts)
 - Acute success rate of 91% and 88% (8mm vs irrigated)
 - Recurrence rates 9% with bidirectional block vs 24%
 - Atrial Fibrillation seen 34% patients during follow up
 - Previous AF 53%; new diagnosis 23%
Summary

- Catheter ablation is first line therapy for typical flutter
- It’s a macro-reentrant tachycardia
- Activation and entrainment manoeuvres are used to confirm the diagnosis
- Long term success rates > 90%
- Bidirectional block not termination of flutter is the endpoint
- Atrial Fibrillation seen 34% patients during follow up
Matt Wright MRCP PhD
Cardiac Electrophysiology

Rayne Institute
Department of Cardiology
St. Thomas' Hospital
Westminster Bridge Road
London
SE1 7EH
United Kingdom

cardiology unit email: matthew.wright@kcl.ac.uk
Atrial Flutter
Atrial Flutter
Atrial Flutter: Anatomy

- Normal
- Prominent Eustachian Ridge
- Sheath Use

Clockwise torque

Heart Rhythm Congress
Birmingham, 2011
Atrial Flutter
Pitfalls Assessing Block

The Lower Loop

Crista

Lower loop reentry

Typical flutter

Pacing site

Pseudocondution

Pseudoblock

Heart Rhythm Congress
Birmingham, 2011